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Abstract—Several natural phenomena, such as floods, earth-
quakes, volcanic eruptions, or extreme space weather events often
come with severity indexes. While these indexes, whether linear
or logarithmic are vital, data-driven predictive models for these
events rather use a fixed threshold. In this paper, we explore
encoding this ordinality to enhance the performance of data-
driven models, with specific application in solar flare forecasting.
The prediction of solar flares is commonly approached as a binary
forecasting problem, categorizing events as either Flare (FL) or
No-Flare (NF) based on a chosen threshold (e.g., ≥C-class, ≥M-
class, or ≥X-class). However, this binary formulation overlooks
the inherent ordinality between the sub-classes within each binary
class (FL and NF). In this paper, we propose a novel loss
function aimed at optimizing the binary flare prediction problem
by embedding the intrinsic ordinal flare characteristics into the
binary cross-entropy (BCE) loss function. This modification is
intended to provide the model with better guidance based on
the ordinal characteristics of the data and improve the overall
performance of the models. For our experiments, we employ
a ResNet34-based model with transfer learning to predict ≥M-
class flares by utilizing the shape-based features of magnetograms
of active region (AR) patches spanning from −90◦ to +90◦ of
solar longitude as our input data. We use a composite skill
score (CSS) as our evaluation metric, which is calculated as the
geometric mean of the True Skill Score (TSS) and the Heidke
Skill Score (HSS) to rank and compare our models’ performance.
The primary contributions of this work are as follows: (i) We
introduce a novel approach to encode ordinality into a binary loss
function showing an application to solar flare prediction, (ii) We
enhance solar flare forecasting by enabling flare predictions for
each AR across the entire solar disk, without any longitudinal
restrictions, and evaluate and compare performance. (iii) Our
candidate model, optimized with the proposed loss function,
shows an improvement of ∼7%, ∼4%, and ∼3% for AR patches
within ±30◦, ±60◦, and ±90◦ of solar longitude, respectively in
terms of CSS, when compared with standard BCE. Additionally,
we demonstrate the ability to issue flare forecasts for ARs in near-
limb regions (regions between ±60◦ to ±90◦) with a CSS=0.34
(TSS=0.50 and HSS=0.23), expanding the scope of AR-based
models for solar flare prediction. This advances the reliability
of solar flare forecasts, leading to more effective prediction
capabilities.

Index Terms—Solar flares, Deep learning, Optimization

I. INTRODUCTION

From earthquakes to tornadoes, and volcanic eruptions to
extreme space weather events, natural occurrences that pose
hazards to our society often come with a severity index. This
index may follow a linear scale (such as flood severity [1] or
tornadoes [2]) or a logarithmic one (for example, earthquakes
[3], volcanic activity [4], or space weather events like flares or
solar energetic particle events [5]). Predictive models for these

events commonly incorporate a set threshold; however, these
models can gain advantages from incorporating the ordinality
of these severity indices. In this work, we will delve into
encoding this information appropriately to efficiently optimize
data-driven predictive models, with specific applications to
binary solar flare forecasting.

Solar flares are short-lived events on the Sun observed as
intense outbursts of energy radiating from the Sun’s surface
in the form of extreme ultraviolet and X-ray radiation, and
they are the central phenomena in space weather forecasting.
They are classified according to their peak X-ray flux
level into the following five categories by the National
Oceanic and Atmospheric Administration (NOAA): X
(> 10−4Wm−2), M (> 10−5Wm−2), C (> 10−6Wm−2),
B (> 10−7Wm−2), and A (> 10−8Wm−2) [5]. These five
major flare classes are measured on a logarithmic scale and
ordered as X>M>C>B>A. Flares weaker than A-class are
generally undetectable and are classified as flare-quiet (FQ).
M-class and X-class solar flares are rare events and much
more powerful than other flare classes. These stronger flares
(M- and X-class) attract the attention of researchers because
they can potentially impact conditions near Earth and disrupt
technological systems such as satellite communications,
GPS navigation, power grids, and aviation [6]. Therefore,
solar flare prediction in a binary setting is most commonly
formulated as predicting ≥M-class flares.

Ordinality-aware Loss Function: In solar flare forecasting,
the binary prediction framework involves categorizing
flares based on their flare magnitude. Specifically, setting
the threshold at ≥M categorizes M- and X-class flares
as Flare (FL), while FQ-, A-, B-, and C-class flares are
designated as No Strong Flare (NF). This approach simplifies
prediction by distinguishing significant flares (M- and X-
class) from less intense activity, aiding in assessing potential
solar disturbances. However, the intrinsic ordinal flare
characteristics in sub-class level is overlooked during model
optimization. Traditional loss functions like cross-entropy
and focal loss [7], commonly used in data-driven model
optimization for binary settings, cannot account for ordinal
characteristics within the FL and NF classes. They treat all
instances equally during optimization, failing to distinguish
between different sub-classes within these categories. This
approach does not fully utilize the ordinal information
inherent in the flare classification system. Hence, in our
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work, we propose encoding these ordinal characteristics
as weighting factors in the binary cross-entropy (BCE)
loss function. By doing so, we assign different weights to
instances based on their flare sub-class, ensuring that the
model optimizes for the specific nuances within each class.
We hypothesize that this adjustment is particularly relevant
considering the ordinal nature of the flare events classification.

Flare Forecasting with Projection Effects: In this study,
we utilize images of line-of-sight (LoS) magnetograms of
active region (AR) patches. ARs are high activity regions on
the Sun’s surface, distinguished by their intense magnetic
fields concentrated within sunspots. These magnetic fields
often undergo significant distortion and instability, triggering
plasma disturbances and releasing energy in the form of
flares and other solar phenomena [8]). This makes ARs
the regions of interest emphasizing the importance of
utilizing AR-based features for predicting solar flares, as the
disturbed magnetic fields in them are often linked as the
main initiators of these solar events. However, the magnetic
field measurements, which are the main features used in
AR-based forecasting techniques, are susceptible to severe
projection effects caused by the orientation of the observing
instrument relative to the solar surface. Therefore, as ARs
get closer to limbs to the degree that after ±60◦ of solar
longitude, the magnetic field readings are distorted [9],
which limits the existing models to include data pertaining
to central locations only [10]. To address this, we derive
images from original LoS magnetogram rasters of AR patches.

Data Preprocessing Pipeline for ARs: Our data prepro-
cessing pipeline introduced in [11], converts high-dimensional
magnetic field rasters to images capturing the overall morphol-
ogy and spatial distribution of ARs retaining the important
shape-based parameters such as size, directionality, sunspot
borders, and polarity inversion lines [12]. Shape-based features
retained in these derived images of magnetograms provide a
robust representation of the overall underlying magnetic activ-
ity. We recognize the persistence of severe projection effects,
however, we hypothesize that the complex feature learning
capabilities of contemporary deep learning models can poten-
tially learn from these distorted readings. Consequently, we
include data encompassing ARs in near-limb regions (beyond
±60◦) as well, thereby offering a novel capability to predict
solar flares throughout the entire solar disk.

Furthermore, it is essential to note that the tracked AR
patches vary in size depending on the size of the ARs.
Existing approaches have been limited to AR patches in central
locations, often resizing rectangular patches to obtain square
images. However, this resizing distorts the original aspect
ratio, consequently altering the shapes and sizes of ARs.
Alternatively, variable-sized AR patches are cropped (using
methods like center crop or random crop) to obtain square
images, resulting in information loss. In contrast, we proposed
and utilized a sliding window kernel-based approach in [11].
This method select such a cropped region that maximizes

total unsigned flux (USFLUX: the sum of the absolute of the
magnetic field strength values), maintaining the original aspect
ratios of AR patches and preserving critical spatial features.
By maximizing the USFLUX, we ensure that we extract the
most representative region with significant magnetic flux build
up. This method adapts to the variability in AR patch shapes
and sizes, avoiding distortion and prioritizing the capture of
more relevant information.

Leveraging the images of LoS magnetograms of AR
patches, we develop a predictive model for solar flares of mag-
nitude ≥M-class. We employ these images to train ResNet34
[13] based model with different configurations of our proposed
loss function. Our contributions can be summarized as follows:
(i) We introduce a novel approach to encode inherent ordinality
of data to binary cross-entropy (BCE) loss function, showing
the effectiveness in solar flare prediction as a case study, (ii)
We show that our models are capable to predict flares across
the entire solar disk, including often overlooked near-limb
regions, improving the comprehensiveness of AR-based solar
flare prediction models. This study presents a key advancement
in the field of solar flare prediction, contributing to ongoing
efforts aimed at enhancing space weather forecasting capabil-
ities and improving our understanding of solar phenomena.

The remainder of the paper is structured as follows. Sec. II
provides an overview of existing studies on solar flare predic-
tions using deep learning models and various data sources.
In Sec. III, we detail the process of data collection with
labeling and consequent data distribution, and describe the
architecture of our flare prediction model. In Sec. IV we
outline our methodology by providing a detailed description
of our modification to the standard cross-entropy loss and
its application to solar flare prediction. Sec. V presents the
experimental design and hyperparameter configurations of
our model. Sec. VI presents our model evaluation showing
the effectiveness of our approach on models’ performance
evaluated with skill scores. Finally, in Sec. VII, we summarize
our findings and suggest avenues for future research.

II. RELATED WORK

Several approaches such as human-based predictions (e.g.,
[14]), statistical models (e.g., [15]), and numerical simula-
tions based on physics-based models (e.g., [16]), have been
employed to predict solar flares. Recently, the use of data-
driven approaches, which leverage machine learning and deep
learning techniques, has significantly increased (e.g., [17]–
[20]) owing to their capacity to exploit extensive datasets and
their experimental achievements in space weather forecasting
[21]. As solar flares are phenomena caused by sudden, abrupt
changes in the magnetic field in the solar atmosphere, these
data-driven approaches most commonly utilize magnetogram-
based data which includes solar full-disk magnetograms (e.g.,
[10], [22]–[25]), multivariate time series (MVTS) data ex-
tracted from solar vector magnetograms (e.g., [26], [27], [28]),
cutouts or patches of tracked AR (e.g., [29], [30]), and features
summarizing each AR patch (e.g., [31], [32]).



A deep learning model based on a multi-layer perceptron to
predict solar flares ≥C and ≥M class was presented in [33]. In
this study, they used manually selected features extracted from
multi-modal solar observations of the full solar disk, which
included vector magnetograms and extreme ultraviolet (EUV)
images to predict ≥M- and ≥C-class flares. In [34], a convolu-
tional neural network (CNN) based hybrid model is proposed
to predict the occurrence of ≥C-class flares. Similarly, [24],
[35] presented a CNN-based model to predict ≥M-class flares
utilizing full-disk magnetogram images. While these full-disk
models include near-limb regions, by design they are unable
to localize the relevant ARs that are likely to flare and instead
issue one single forecast for the entire solar disk.

In [32], a support vector machine based model trained with
25 AR summary parameters extracted from vector magne-
tograms of AR patches within ±68◦ of solar longitude was
presented. Similarly, in [27], a deep learning based time series
classifier and in [28] a sliding window Time Series Forest
(TSF) was trained with a MVTS data of 24 space weather
related physical parameters primarily calculated from AR
magnetograms within ±70◦ of solar longitude. Furthermore,
a CNN-based flare forecasting model trained with solar AR
patches (resized to 100×100 pixels) extracted from LoS mag-
netograms within ±30◦ of solar longitude to predict ≥C-, ≥M-
, and ≥X-class flares was presented in [29]. More recently,
[36] proposed a CNN-based model named “CARFFM-4”
trained with AR patches (sized to 160×160 pixels) created
from R parameter [37] within ±30◦ of solar longitude to
predict ≥M-class flares in the next 48 hours.

All the literature reviewed in this section, formulates solar
flare prediction as a binary forecasting problem utilizing a
binary loss function without any flare ordinal characteristics.
Furthermore, It is important to note that, there is variabil-
ity in the literature in terms of the type of data modality
which includes multiple instruments (HMI/SDO, AIA/SDO,
MDI/SOHO) and data types (EUV images, magnetograms
and extracted features corresponding to AR and full-disk).
Furthermore the variability in prediction targets (≥C-, ≥M-
, ≥X-class flares) and forecasting horizon (24 hours and 48
hours) is also prominent. The predictive capabilities of AR-
based models are often limited by observations taken from
central locations from ±30◦ to ±70◦. The full-disk models
complement the issue of longitudinal coverage in AR-based
models; however, they fail to pin-point an active region and
issue a single forecast for the entire solar disk. In this work,
we introduce a new loss function to build a limb-to-limb
flare prediction model that is trained on magnetogram images
of AR-patches spanning full 180◦ (±90◦) of solar longitude
and evaluate our models’ efficacy in different zones defined
by longitudinal range and provide a novel capability, to our
knowledge, missing in operational systems.

III. DATA AND MODEL

The primary raw input data in our work are obtained from
line-of-sight (LOS) magnetograms of ARs provided by the
Helioseismic and Magnetic Imager (HMI) [38] onboard the

(a) Original HMI SHARP Magnetogram 
Patch Size: 688 × 448 px

(b) HMI SHARP Bitmap
High Activity Region Size: 520 × 440 px

(c) Final Processed Image
Size: 512 × 512 px

Fig. 1. An illustrative example of (a) Original raw input magnetogram of
HMI AR patch corresponding to HARP number: 7115 (NOAA AR number:
12673) observed on 2017-09-06 at 06:00:00 UTC, (b) Bitmap corresponding
to HMI AR patch in (a) showing the high activity region (region of interest)
indicated by white pixels, (c) Final processed image of AR patch in (a) now
sized to 512×512, that is used to train our models.

Solar Dynamics Observatory (SDO) [39], which are publicly
available as a data product named Spaceweather HMI Active
Region Patches (SHARP) [40] from the Joint Science Oper-
ations Center1 at a temporal cadence of 12 minutes. In this
work, we utilized magnetograms spanning from May 2010
to December 2018, sampling magnetograms at a cadence of
one hour. The magnetograms of AR patches contain rasters of
magnetic field strength values typically ranging from ∼±4500
G. An example of magnetogram of an AR patch is shown in
Fig. 1 (a). Along with magnetograms, we use bitmaps (another
data product from the SHARP series) which define the region
with pixels located within or outside the ARs, providing the
region of interest within the AR patch as shown in Fig. 1 (b).
The bitmaps are equal in size to the LOS magnetograms of
AR patches, where the area represented by white pixels shows
the region within the AR and hence our region of interest [40].
For each AR patch, we assign a binary label using peak X-
ray flux converted to NOAA/GOES flare classes such that: (i)
≥M indicates Flare (FL) signifying the existence of a relatively
strong flaring activity, and (ii) <M indicates No Flare (NF)
with a prediction window of 24 hours. To illustrate, from
the timestamp of an AR patch to the next 24 hours, if the
maximum NOAA/GOES flare class is <M, then we label the
AR patch as NF; otherwise, FL.

In our data processing pipeline, introduced in our prior work
[11] and illustrated in Fig. 2, we begin by collecting hourly
instances of raw input magnetograms of AR patches, alongside
their corresponding bitmaps. Our initial step involves applying
the bitmap as a filter to precisely crop the AR patches, isolating
the regions with high activity. Subsequently, we implement a
size filter: if the resulting cropped AR patches are smaller than
70 pixels in width, we exclude them from our dataset. It is
worth noting that we determine this threshold based on the
overall data distribution, ensuring retention of all instances
corresponding to ’FL’ instances while removing those from
the ’NF’ class. Following this filtering stage, we proceed to
adjust the magnetic flux. We cap the flux values at ±256G,
and any flux values within ±25G are set to 0 to mitigate noise.
Ensuring uniformity in size, we apply zero-padding to patches
smaller than 512×512 pixels. Conversely, for larger patches,
exceeding 512×512 pixels, we employ a 512×512 kernel to

1http://jsoc.stanford.edu



HMI/SDO SHARP
Magnetograms

HMI/SDO SHARP
Bitmaps

Bitmap Filtering

Clamping
Magnetic Flux

(-256G to +255G)

Noise Removal
(-25G to +25G)

AR
Patch
Size

Cropped Patch 
Size < 70px 
(in width)

Removed From
Dataset

=512 × 512 px

<512 × 512 px

>512 × 512 px

Run a Kernel
512 × 512 px

Find Optimal
Patch and Crop

argmax USFLUXkernel

USFLUXactual

Optimal Patch

NOAA/GOES
Flare Catalog

Labeled Dataset

Scaling (0-255)
(JPEGS)

Zero Padding
(512 × 512 px)

Resizing Not
Required

Fig. 2. The overall schema of the data processing pipeline used in this work. It shows a sequential pipeline for creating JPEG images from magnetogram
rasters and corresponding bitmaps used for cropping the regions with relevant information. Boxes colored in green collectively defines our dataset.
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Fig. 3. (a) A bar plot representing the overall distribution of flare classes in our dataset (b) A bar plot showing binarized (≥M) flare distributions across the
four temporally non-overlapping tri-monthly data partitions. Note: The height of the bars are in logarithmic scale.

select the patch with the maximum total unsigned flux (namely
USFLUX, which is the sum of the absolute value of magnetic
field strength represented as raster values in magnetograms).
By doing this, we aim to minimize information loss by picking
a spatial window where the total flux is the highest, which
is more likely to include the regions of interest. Finally, to
standardize the representation, all patches are scaled to fit
within the range of 0-255, facilitating the generation of images.
An example of a final processed image is shown in Fig. 1
(c) generated using the magnetogram of AR patch in Fig. 1
(a) and the corresponding bitmap in Fig. 1 (b), providing an
illustration of the outcomes of our data preprocessing steps.

The overall distribution of our labeled AR patches data, with
binary flare classes NF (comprising flare-quiet (FQ), A-, B-,
and C-class flares) and FL (including M- and X-class flares),
is shown in Fig. 3 (a). In total, we have 501,106 instances
belonging to the NF class and 10,315 instances belonging to
the FL class, resulting in a class imbalance ratio of ∼ 1:49.
We split our dataset into four non-overlapping tri-monthly
partitions as shown in Fig. 3 (b), using the onset timestamps of
the HARP series to ensure that each AR trajectory remains en-
tirely within a single partition, thus avoiding any overlap. This
approach contrasts with the method described in [41], which

uses magnetogram observation timestamps for partitioning the
full-disk magnetograms. Finally, we use Partitions 1 and 2 as
our training set while Partitions 3 and 4 are used as validation
and test set respectively. The preprocessed dataset used in this
study is publicly available from [42].

The task of solar flare prediction in this work is formalized
as a binary image classification problem; therefore, we select a
general CNN based model, ResNet34 [13]. Recently, attention-
based models, notably Vision Transformers (ViTs) [43], have
gained prominence for their superior performance in image
classification tasks. Despite their state-of-the-art results, these
models tend to have a high number of trainable parameters,
making them resource-heavy and less suitable for applications
with limited computational resources or small datasets. For
our specific application involving a small dataset, we opted for
a more straightforward approach using a CNN-based model,
specifically ResNet34. We modified the ResNet34 architecture
to handle 1-channel input magnetogram images (grayscale
images) by adding an initial convolutional layer with a 3×3
kernel, a stride of 1, and three output feature maps. This
modification allows the model to utilize pre-trained weights
effectively while processing the 1-channel magnetogram im-
ages. The final architecture includes 34 convolutional layers
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Fig. 4. An illustrative plot showing: (a) Standard binary cross-entropy (BCE) loss. (b-c) BCE for solar flare prediction (BCE-SF) which encodes ordinal flare
characteristics as loss weighting mechanism with α=1 and α=4 respectively. Note: FL class indicates target 1 and NF class indicates target 0.

(including all residual and basic convolutional layers), one
max pooling layer, one adaptive average pooling layer, and
one fully connected layer.

IV. ORDINALITY-AWARE LOSS FUNCTION DESIGN

In this work, we utilize a novel loss function designed for
binary solar flare prediction that encodes the ordinal flare
characteristics in the standard binary cross-entropy (BCE) loss.
Let N be the total number of instances in a batch. Let yi denote
the true label for the i-th sample, where yi ∈ {0, 1}. Let pi
be the predicted probability that the i-th sample belongs to
the ”FL” class (target 1), defined as pi = σ(ŷi), where ŷi) is
the model output (logit) and σ is the sigmoid function, then
the standard binary cross-entropy BCE(y, ŷ) loss function is
represented as shown in Eq. (1) and the corresponding loss
function plot is shown in Fig. 4 (a).

BCE(y, ŷ) = − 1

N

N∑
i=1

[yi log(pi) + (1− yi) log(1− pi)]

(1)
As mentioned earlier, in the binary setting of solar flare

prediction where our chosen threshold is ≥M, the two binary
classes are: (i) the NF-class including FQ-, A-, B-, and C-
class instances, and (ii) the FL-class including M- and X-
class instances. As each of these individual flare classes are
ordinal in nature, where FQ<A<B<C<M<X, we introduce a
weighting factor based on the corresponding sub-classes (flare
classes within each binary class) such that instances belonging
to these sub-classes are represented by weights β as shown in
Eq. (2).

β =



10 if FQ
102 if A
103 if B
104 if C
102 if M
10 if X

(2)

The BCE-SF loss is designed in such a way that the incor-
rect predictions in the binary flare classes result in different
losses based on the sub-class of the instances. To elaborate
further, since an X-class flare is ten times more powerful than
an M-class flare, even though both belong to class FL, the
loss value for an X-class flare should be higher than that for
an M-class flare. Similarly, a B-class flare in the NF class is
ten times weaker than C-class flares in the same binary class.
Therefore, incorrect predictions of these two classes should
have different loss values. Thus, we used these ordinal weights
(βi) representing individual flare classes, and our proposed
binary cross-entropy loss for solar flare prediction (BCE-SF)
can be represented as shown in Eq. (3).

BCE-SF(y, ŷ) = − 1

N

N∑
i=1

α× BCE(yi, ŷi)×
1

log10(βi)
(3)

Here, α is a scaling factor that aligns the loss values with
the scale of the corresponding BCE loss. Specifically, when
α = 1, the maximum loss value for an incorrectly predicted
instance matches the scale of the BCE loss, as shown in Fig. 4
(b). In this case, the loss value scale for FQ- and X-class
(the two extremes of the binary categories) aligns with the
corresponding BCE loss, while all other incorrect predictions
have lower loss values. Similarly, when α = 4, the minimum
loss value for an incorrectly predicted instance matches the
scale of the BCE loss, as shown in Fig. 4 (c). Here, the
loss value scale for C-class aligns with the BCE loss scale,
while all other incorrect predictions have higher loss values.
Therefore, we recommend the range of α ∈ [1, 4] which can
be regarded as a hyperparameter for optimal performance. It is
important to note that the BCE-SF loss, by leveraging intrinsic
flare characteristics, offers a simple modification to the BCE
loss without introducing new model-dependent parameters.

V. EXPERIMENTAL SETTINGS

In this section, we comprehensively delve into our dataset
preparation methods for model training and evaluation, along-



(a) Original (Preprocessed) (b) Polarity Inversion (c) Gaussian Blurring

(d) Vertical Flipping (e) Horizontal Flipping (f) Add Noise (+25G)

Fig. 5. An illustrative example of (a) input magnetogram of HMI AR patch corresponding to HARP number: 7115 (NOAA AR number: 12673). (b-f) five
different augmentations applied to AR patch in (a). These augmentations are applied to the processed magnetograms before scaling to 0-255.

side detailing our model configurations in regard to the usage
of BCE and BCE-SF loss functions, and hyperparameters. Fur-
themore, we provide the definition of our evaluation metrics
and the rationale behind the selection of these metrics.

A. Dataset
As mentioned earlier in Sec. III, we follow time-segmented

trimonthly partitioning to create four partitions of our entire
dataset. Partition-1 and 2 combined are used as the training set.
However, due to significant class imbalance in our dataset, we
used undersampling together with data augmentation to create
a balanced training set. Firstly, we augmented data instances
belonging to the FL-class in our training set using five data
augmentation techniques: (i) polarity inversion, which swaps
the signs of positive polarity to negative and vice versa as
shown in Fig. 5 (b), (ii) Gaussian filtering, which applies
a Gaussian blur to the image to reduce noise and detail
(Fig. 5 (c)), (iii) Vertical Flipping , which involves flipping
the image along a horizontal axis (Fig. 5 (e)), (iv) Horizontal
Flipping, which involves flipping the image along a vertical
axis (Fig. 5 (d)), and (v) Adding random noise within ±25G
(Fig. 5 (f)). To balance the FL-Class instances with NF, we
undersampled our training data by randomly selecting 30% of
instances belonging to A-, B-, C-class flares each, and ∼8%

of instances from FQ from both Partition-1 and 2. For realistic
evaluation, we maintained the original imbalanced distribution
in Partitions 3 and 4, which are our validation and test sets
respectively, as shown in Fig. 6.

B. Model Parameters

TABLE I
HYPERPARAMETERS SEARCH SPACE WITH EXPERIMENTALLY OBSERVED

OPTIMAL HYPERPARAMETERS FOR EACH MODEL.

Optimal Parameters

Hyperparameters Search Space BCE BCE-SF

Initial Learning Rate {0.00001 to 0.01} 0.01 0.001

Weight Decay {0.00001 to 0.01} 0.01 0.001

Batch Size {48, 64, 80} 64 64

Scaling Factor (α) {1, 2, 3, 4} N/A 2

In our model hyperparameter selection process, we define
the hyperparameter space, encompassing initial learning rates
(η), weight decay parameters, batch sizes, and scaling factors
(α) as shown in Table I. Following the definition of our
hyperparameter space, we conduct a grid search across this
space, evaluating on the validation set for all our models.
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Fig. 6. The overall distribution of data instances partitioned into train set (showing original, augmented and undersampled data counts), validation set, and
test set used in this work.

During this search, we train our models using stochastic
gradient descent (SGD) with BCE and BCE-SF loss function.
Additionally, we employ a dynamic learning rate strategy
called ReduceLRonPlateau with a factor of 0.3 and a
patience period of 2 epochs. This learning rate scheduling
mechanism starts the training with an initial learning rate (η) as
mentioned in Table. I. If the validation loss does not improve
for two consecutive epochs (patience period), the new learning
rate is calculated as follows:

ηnew := ηcurrent × factor

Upon completing the grid search and evaluating the models,
we identified the optimal hyperparameters as shown in Table I.
These parameters exhibited superior performance during the
search and we use these to train our final models for 50 epochs
and evaluate on the test set.

C. Evaluation Metrics

True Skill Statistic (TSS, in Eq. 4) and Heidke Skill Score
(HSS, in Eq. 5), derived from the four elements of confusion
matrix: TP, TN, FP, FN are the two forecast skills scores
widely used in evaluating flare prediction models.

TSS =
TP

TP + FN
− FP

FP + TN
(4)

HSS = 2× TP × TN − FN × FP

((P × (FN + TN) + (TP + FP )×N))
(5)

where, N = TN + FP and P = TP + FN .

The values of TSS and HSS range from -1 to 1, where
1 indicates all correct predictions, -1 represents all incorrect
predictions (also, it means that all inverse predictions are
correct, i.e., there is a skill), and 0 represents no skill. Unlike

TSS, HSS is a metric that accounts for class imbalance. It
is commonly used in evaluating solar flare prediction models
because these datasets typically have a high imbalance ratio
as discussed in [44], [45]. However, choosing a candidate
model based on two skill scores becomes difficult, as it
demands preference of one metric over another at the end.
Therefore, by combining TSS and HSS in a geometric mean
as in the Composite Skill Score (CSS, in Eq. 6), we obtain a
single metric that balances between discrimination ability and
imbalance awareness.

CSS =

{
0, if TSS ×HSS < 0√
TSS ×HSS, otherwise

(6)

CSS considers both the discrimination power of the model
(TSS) and its ability to outperform random chance (HSS),
offering a more comprehensive evaluation. It provides a single
metric that accounts for both aspects of model performance,
making it more suitable for assessing forecast models, partic-
ularly in scenarios with class imbalance. Hence, we evaluate
and compare our models based on the single metric, which
is CSS but report both TSS and HSS for completeness. For
reproducibility, the source codes for this work is publicly
available from our open source repository [46].

VI. EXPERIMENTAL EVALUATION

As explained earlier in Sec. V-A, we conducted experiments
to predict solar flares in a binary setting (≥M-class flares)
using a ”train-validation-test split” of our entire dataset, which
consists of magnetograms of AR patches covering a solar
longitudinal range of ±90◦ (i.e., the entire solar disk). We
utilized the validation set to monitor the models’ performance
every epoch and tuned hyperparameters to optimize the CSS.
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Fig. 7. Performance of our models trained with both BCE and BCE-SF loss was evaluated on the test set in terms of (a) TSS, (b) HSS, and (c) CSS. The
skill scores are shown for different ranges of solar longitudes: ±30◦, ±60◦, and ±90◦. This longitudinal ranges indicates the performance evaluated on ARs
from the test set located within 0◦ to 30◦, 0◦ to 60◦, and 0◦ to 90◦ in both the directions (East (-ve) and West (+ve)) of the Sun.

After training the model with optimal hyperparameters, we
employed a threshold tuning approach to calibrate our models
by tuning the prediction score thresholds. This involved eval-
uating the performance of each model on the validation set at
different threshold values ranging from 0.01 to 0.99 with an
increment of 0.01. We selected the threshold that optimized
CSS for each model individually. However, this resulted into
a same threshold value of 0.69 for both the models trained
with BCE and BCE-SF loss functions. These thresholds were
then applied to the test set for both models, and the models’
performance was reported on the test set.

Additionally, we assessed the performance of both of our
models on subsets of data representing different longitudinal
coverages: within ±30◦, ±60◦, and ±90◦ of solar longitude.
To elaborate, longitudinal coverage of ±30◦ indicates AR
patches in our test set that correspond to the central region of
the Sun, encompassing up to −30◦ in the East direction and up
to +30◦ in the West direction from the center (0◦). A coverage
of ±60◦ extends further, encompassing a broader region that
extends 60◦ to the East and West of the solar longitude. This
range covers a significant portion of the Sun’s surface, allow-
ing for a more comprehensive examination of solar activity
beyond just the central region but still within a reasonably
close proximity to it. A coverage of ±90◦ encompasses the
entire test set. The performance of our models relative to each
other in terms of TSS, HSS, and CSS is illustrated in Fig. 7
(a), (b), and (c), respectively.

Upon evaluation, we noted that the model trained with
the BCE-SF loss function consistently outperformed the one
optimized with BCE loss across all three skill scores and
longitudinal coverages. Comparing the performance on the
longitudinal coverage of ±30◦, we observed ∼11%, ∼3%,
and ∼7% higher skill scores in terms of TSS, HSS, and
CSS, respectively, as shown in Fig. 7. Furthermore, this
improvement was also observed with increased longitudinal
coverage. For ARs in the test set within ±60◦, we noted ∼7%,
∼1%, and ∼4% higher TSS, HSS, and CSS, respectively, with

BCE-SF compared to the model trained with BCE. Overall,
for our entire test set, we observed ∼6%, ∼1%, and ∼3%
higher scores in terms of TSS, HSS, and CSS, respectively, for
the BCE-SF trained model over BCE, as illustrated in Fig. 7,
indicated by ±90◦. Additionally, our analysis revealed a lin-
early decreasing trend in model performance with increasing
longitudinal coverage of ARs, with highest skill scores noted
for ARs within (±30◦) and lowest when within ±90◦) for both
of the models (BCE and BCE-SF).

After noticing the pattern indicating a decline in model
performance with increasing longitudinal coverage, we inves-
tigated the effectiveness of our models on non-overlapping
regions of solar longitudes. To facilitate this analysis, we
delineated three zones: (i) within 0◦ to ±30◦, (ii) the region
between ±30◦ to ±60◦, and (iii) the region between ±60◦

to ±90◦. Similar to our earlier evaluation across overlapping
longitudinal ranges, we computed all three skill scores to
evaluate the model’s performance across these zones. In doing
so, we observed a similar linearly decreasing trend in skill
scores as our earlier evaluation, highest in central regions
(0◦ to ±30◦) and lowest in limb regions (±60◦ to ±90◦),
as illustrated in Fig. 8 from all three models. Interestingly, we
observed that while TSS is 3% lower, HSS was 1% higher with
the BCE-trained model compared to BCE-SF when evaluating
within ±30◦ to ±60◦ of the solar longitude, as shown in Fig. 8
(b). This highlights using a composite skill score, as choosing
the model based solely on TSS or HSS scores might lead to
a false sense of good performance.

It is worth noting that while existing models are typically
designed to predict solar flares up to ±60◦ of the solar
longitude, our model demonstrates capability in the near-limb
regions, namely the region between ±60◦ to ±90◦. Despite
having lower skill scores compared to those in the central
region, this study reveals a new capability that demonstrates
skill in the near-limb region, thereby advancing solar flare
prediction. This advancement underscores the significance of
our research in extending predictive models for solar flares
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Fig. 8. Performance of our models trained with both BCE and BCE-SF loss was evaluated on the test set in terms of (a) TSS, (b) HSS, and (c) CSS. The skill
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beyond central regions, thereby improving our understanding
and forecasting capabilities for solar phenomena.

VII. CONCLUSION AND FUTURE WORK

In this study, we primarily introduced a novel ordinality-
aware binary loss function to optimize data-driven predictive
models and demonstrated its effectiveness in improving predic-
tive capabilities compared to the standard binary loss function,
specifically in the application of solar flare prediction. Further-
more, using our data preprocessing pipeline, we utilized AR
patches encompassing the limb-to-limb range of the Sun (i.e.,
±90◦) to build flare prediction models capable of forecasting
solar flares of magnitude ≥ M-class. Upon evaluating the
capability of our limb-to-limb models, the results show that
we can satisfactorily predict flaring activity despite severe
projection effects, although there is room for improvement
(the skill is limited when compared to central locations).
Additionally, the results show that shape-based features in
magnetograms are effective for predicting solar flares even
when the ARs are close to the limbs.

While full-disk models are developed to complement AR-
based models in near-limb regions, they lack the ability to
localize AR-specific predictions. We define this work as an
important step towards fully integrating ARs into solar flare
prediction, with implications for advancing such predictions.
Numerous avenues for future exploration exist, which include
exploration on utilizing the actual peak X-ray fluxes as in-
stance ordinality into the binary loss functions, investigating
this approach with multi-modal solar observations, developing
spatiotemporal models, and incorporating explanatory and
interpretative frameworks into the model to enhance reliability.
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